

Intelligent/cognitive Agents Applications for Pervasive Computing

Using COGNET Human Modeling Capabilities for Pervasive Applications

Vassil Iordanov CHI Systems Inc.

Vassil@chiinc.com

Goals of COGNET Research...

- ♦ Enable Cognitive Task Analysis of Human Problem-Solving in:
 - ♦ Real-Time Systems and Problems
 - ♦ Multi-Tasking Jobs and Environments
- ◆ Create Model that can:
 - ◆ Describe human information processing in both cognitive and behavioral terms
 - ♦ Generate predictions of future behavior
 - **♦ Explain its decisions**
- ♦ Driven by Application Concerns, such as in:
 - ♦ Simulations that predict (expert) human performance
 - ◆ Embedded models
 - ◆ Intelligent Assistants and Agents

COGNET/iGEN™ Framework

- ◆ COGNET -- openly published, theory-based methodology to capture internal expertise
- **♦ CEL Description Language**
 - ♦ Formalism for representing domain-specific expertise
- ◆ BATON -- underlying executable cognitive architecture
 - ♦ to emulate internal processing mechanisms
 - highly portable and embeddable
 - ◆ extendable
 - ♦ C++ and Python Bindings
 - ♦ incorporated into iGEN[™]
- iGEN[™] -- product that supports authoring, debugging, visualization and application of executable COGNET models

What is a COGNET Model?

Competence Model

What does it consists of?

- ◆ Declarative knowledge -- how to think about the world
 - ♦ multi-panel blackboard, with semantic links
- ♦ Procedural knowledge chunks -- how to do things
 - ◆ compiled goal hierarchies
 - ◆ read and modify declarative blackboard
- ♦ Perceptual demons -- how to make sense of what you see & hear
 - ♦ self-activating encoding rules
- Action knowledge -- how to manipulate things
- ♦ Meta-Knowledge -- attention flow
 - Knowledge-applicability contexts (task triggers)
 - Situational priority
 - ◆ Metacognition

What can you do with cognitive agents?

- ◆ Simulation
- ◆ Prototyping
- ◆ Training and Documentation
- ♦ Virtual Tutors
- ♦ Intelligent Human-Computer Interface and automation

Training/Tutoring

◆ Training

- how can you predict what knowledge trainees need to perform the correct actions?
- ♦ how can you diagnose what knowledge is missing when trainee actions are incorrect?

♦ Virtual Tutors

- what the user should do next?
- why should he/she do it?
- when should he/she do it?
- how should it be done?
- ♦ explanation across PC devices

Human-Computer Interfaces

♦ HCl's

- ♦ what information is needed at what times in the process?
- ♦ what interaction dynamics should be built into the interface?
- ♦ how can the HCl know what the user is doing?
- ♦ how can the HCl help the user perform work tasks?
- how does this differ for novices, experts? Different personalities?

♦ System Evolution Planning

- what knowledge of old systems can/should be transferred to new one?
- how can new system usage be engineered when there are no existing users?
- what are the cognitive requirements of the new system, given the problems experienced (and successes achieved) with the old?

Simulation

how can we get simulated entitites to behave realistically?

- ♦ Sensory/Motor abilities
- ♦ Performance Models / Micro-models
- **♦ Memory moderators**
- ♦ Metacognition / planning / failures
- ♦ Individual differences
- ◆ Representational scalability
- ♦ Learning

The Development Workbench (iGEN)

BATON Architecture

CGR: Cell Graphical Representation

- ♦ Visual language
- ◆ Context driven editing
- ♦ Only correct syntax
- ◆ Configurable for specific domains

EXIST (NIST) + COGNET

- ◆ Developed in the frame of the NIST Aroma Project
- ♦ NIST EXperimental Simulation Tool (EXiST)
 - ♦ Will help define use cases, requirements and measurements for Pervasive Computing
 - ♦ Simulator built around a real-time event engine
 - ◆ Uses measurements from experimentation to feed the simulation
 - Allows measurements to be combined to form more complex metrics
 - ♦ Will allow for the validification of conceptual models for pervasive computing such as NIST Layered Pervasive Computing (LPC) conceptual model
 - ♦ Modular Design
 - ◆ Developed in Python (simple development and integration of new modules in Python)

EXIST (NIST) + COGNET

- ◆ Using Cognitive Agents in Pervasive Computing
 - ◆ to assess PC:
 - ◆ They can emulate the human interactions during simulations and therefore help building viable business models of technologies
 - ♦ to create smarter Smart Spaces:
 - ◆ Expert Systems can help users using a Pervasive Computing environment
 - And learn from their interactions

Embedding BATON

Questions and Discussion

vassil@chiinc.com

www.cognitiveagent.com

